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AN ANALYSIS OF THE CAPABILITIES AND LIMITATIONS OF

TURBINE AIR COOLINGMETHODS

by Jack B. Esgar, Raymond S. Colladay, and Albert Kaufman

Lewis Research Center

SUMMARY

An analytical investigation Was conducted to determine the relative merits of con-

vection, transpiration, and full coverage film air cooling methods for local turbine inlet

temperatures from 2000 ° to 3500 ° F (1367 to 2200 K), gas pressures from 5 to 40 atmo-

spheres (50.7 to 405.3 N/cm2), and cooling air temperatures from 600 ° to 1200 ° F (589

to 922 K). Effects of blade and vane wall thickness, leading edge radius, and material

temperature were also investigated.

It was determined that convection cooling becomes extremely difficult under the high

heat flux conditions that result from high gas temperatures and pressures. Reducing the

wall thickness or utilizing materials with considerably higher temperature limitations

can significantly increase the range of conditions under which convection cooling will be

satisfactory. Convection cooled stators for local turbine inlet temperatures to 3500 ° F

(2200 K) are possible with a material temperature of 2200 ° F (1478 K).

Increasing allowable metal temperature 100 ° F (56 K) Or reducing cooling air tem-

perature 200 ° F (111 K) can do more to improve the cooling capabilities of convection

cooled blades and vanes than is possible by improvements in the better state-of-the-art

convection designs.

The coolant flow requirements for full coverage film and transpiration cooling are

very much lower than for convection cooling at high turbine inlet temperatures and high

compressor pressure ratios. These cooling methods can often permit turbine inlet tem-

peratures 1000 ° F (556 K) higher than permitted with convection cooling at the same

coolant flow ratio. Cooling air temperature and maximum allowable wall temperature

have considerably less effect on the coolant flow requirements for transpiration and full

coverage film cooling than for convection cooling.

Oxidation of presently available transpiration cooled materials requires a material

temperature reduction relative to other cooling methods so that for many applications

transpiration cooling requires more coolant flow than full coverage film cooling. Recent

research on transpiration cooling materials shows promise of allowing material temper-
: ! •

atures that will make coolant flow requirements for transpiration cooling less than that

for other cooling methods a t nearly all gas temPerature leve_.



INTRODUCTION

An analysis was conducted to determine the potentials of convection, full coverage

film, and transpiration cooling for ranges of turbine inlet temperature and compressor

pressure ratio expected in future gas turbine engines.

It is necessary to review periodically the expected future trends for gas turbine en-

gines and then determine how these trends will affect the necessary research and devel-

opment work in the various engine components. The trend in both military and commer-

cial gas turbine engines is towards turbofan engines having a compact, high temperature

gas generator. To make such engines compact, lightweight, and with superior specific

fuel consumption, there is the need to simultaneously increase both compressor pres-

sure ratio and turbine inlet temperature. Compressor pressure ratios to 40 or higher

appear to be looming in the future, and turbine inlet temperatures may go to those cor-

responding to stoichiometric fuel-air mixtures if materials and cooling designs can be

developed that will tolerate such temperatures reliably.

Up to the present time convection cooling has been the primary means of cooling gas

turbine engines, with some film cooling augmentation in critical regions. At the severe

cooling conditions expected in future engines, it is likely that convection cooling will be

inadequate, and more advanced cooling schemes such as film and transpiration cooling

will have to be utilized. In reference 1 it was shown that the potentials of convection

cooling could be determined in a relatively simple manner by considering the blades as

heat exchangers and evaluating the cooling requirements on a basis of the heat capacity

of the cooling air flowing through the blades and vanes. Research being conducted on

transpiration and film cooling methods is reported in references 2 to 10.

In order to evaluate the relative potentials of convection, film, and transpiration

cooling for future engines, analyses were made of expected heat fluxes that will be en-

countered in future engines for ranges of gas pressures from 5 to 40 atmospheres (50.7

to 405.3 N/cm 2) and for local turbine inlet temperatures from 2000 ° to 3500 ° F (1367 to

2200 K). Required coolant flows were then calculated for turbine rotor blades and stator

vanes and compared relative to those needed for advanced convection cooled vanes and

blades at a turbine inlet temperature of 2500 ° F (1644 K). Parameters investigated in-

cluded cooling air temperature from 600 ° to 1200 ° F (589 to 922 K), blade and vane

maximum metal external surface temperatures from 1400 ° to 2400 ° F (1033 to 1589 K),

blade and vane wall thicknesses from 0.020 to 0.050 inch (0.51 to 1.27 ram), and leading

edge diameters from 0.20 to 0.40 inch (5.08 to 10.16 mm).

ANALYTICAL PROCEDURE

In order to make the results of this investigation be of a general nature rather than



for a specific application, very few assumptionswere madethat would restrict the re-
sult to applicationsfor any specific engine,but somespecific assumptionswere re-
quired. Theseassumptionsare givenin table I.

TABLE I. - ASSUMPTIONS USED IN ANALYSIS

Condition Stator Rotor

Gas approach Mach number

Average gas channel Mach number

Airfoil chord, in. (cm)

Ratio of relative gas total temperature to

stator inlet total temperature

Ratio of relative gas total pressure to stator

inlet total pressure

Metal thermal conductivity for convection cooling,

Btu/(hr)(ft)(°F) (J/(m)(sec)(K))

Effective metal thermal conductivity for film cooling,

Btu/(hr)(ft)(°F) (J/(m)(sec)(K))

Effective porous metal thermal conductivity for

transpiration cooling (ref. 11), Btu/(hr)(ft)(°F)

(J/(m)(sec)(K))

0.24

0.60

2.0 (5.08)

1.0

1.0

12 (20.75)

11 (19.03)

8 (13.84)

0.5

O. 65

1.5 (3.81)

0.9

0.7

12 (20.75)

11 (19.03)

8 (13.84)

Cooling air temperature is influenced by compressor pressure ratio, flight speed,

flight altitude, and whether the temperature has been reduced by rejecting heat to fuel

or engine bypass air. As a result, no attempt has been made to consistently vary cool-

ing air temperature with total gas pressure.

Heat-Transfer Models

Figure 1 illustrates the three heat-transfer models used in analyzing the coolant

requirements for convection, full coverage film, and transpiration cooled turbine blades

and vanes. Figure l(a) illustrates in schematic form one of the many heat-transfer

models that can be used for convection cooling. With this cooling method, all of the heat

transferred from the gas to the blade or vane must be conducted through the wall before

it can be transferred to the cooling air by convection. As a result, the temperature drop

through the wall, due to conduction, decreases the driving temperature difference be-

tween the wall and the coolant. The thermal effectiveness of the cooling air is then de-

fined as



Tc, o - Tc,i (1)
Z/conv =

TB, i " Tc, i

(All symbols are defined in appendix A. ) For the analyses of this report, calculations

were made for values of thermal effectiveness _conv equal to 0.5, 0.7, and 1.0.

Hot gas ( TB,o
,. Tg, hconv _ -T-.

. '_conv=T TI '/i°' B,i- c,i

Tc,i
(a) Convectioncooling.

Hotgas ,, Tg, htran s /rTB, o

....._p e" _.._ _-___-i c o

!i;1'
Tc, i z TB' i

(b) Transpiration cooling.

Hotgas _-_ Tg, hfilm /TB, o_ 0.6= Tc o -Tc i

/I// ////I_'.__I _TB i htrans < hfilm < hconv
/C, i

(C)Full coveragefilm cooling.

Figure 1. - Heat-transfer modelsusedin analysis.

_trans" O.8 -
TB,o - Tc, i

htrans < hconv

Figure l(b) illustrates the heat-transfer model used for the transpiration cooling

analysis. With transpiration cooling, the coolant is still in contact with the wall on the

outer (hottest) surface. As a result, this cooling scheme has the potential of heating the

cooling air to a higher temperature than is possible with convection cooling. Therefore,

for transpiration cooling the equation for thermal effectiveness of the cooUng air

T c -
V/trans = , o Tc_ i

TB, o - Tc, i

(2)

has the value TB, o in the denominator instead of TB, i as was in equation (1) for con-

vection cooling. The vaiue of _rans = 0.8 is an assumed value that will be discussed

in more detail later.

In addition, the gas-to-blade heat-transfer coefficient for transpiration cooling is

reduced relative to convection cooling by the layer of boundary layer air that is devel-



oped by transpiration as discussed in references 6 to 10. A transpiration cooled blade

or vane will, therefore, have less heat transferred to it from the gas than a convection

cooled blade or vane.

Figure l(c) illustrates the full coverage film cooling heat-transfer model. This

type of film cooling resembles transpiration cooling except there are fewer (and larger)

holes for the cooling air to pass through to the outside surface. Full coverage film cool-

ing provides a layer of air on the outside surface of the blade or vane that reduces the

gas-to-blade heat-transfer coefficient relative to convection cooling, but to a lesser de-

gree than for transpiration cooling. In the analysis conducted in this report, the full

coverage film cooling model was considered to approach maximum usefulness of film

cooling by providing a very large number of small film cooling passages. The equation

for thermal effectiveness _film for film cooling is the same as equation (2) for trans-

piration cooling, but the value of thermal effectiveness (_film = 0.6) was assumed to be

lower, as will be discussed in more detail later. With film cooling, depending on the

configuration, the heating of the cooling air could all occur within the film cooling pas-

sages, or part of the heating could result from convection cooling on the inside surface

prior to the cooling air entering the film cooling passages.

Convection Cooling Analysis

For convection cooling under steady-state conditions the following one-dimensional

heat-transfer equations are applicable:

Hot gas to outside surface:

Conduction through the wall:

Heat picked up by cooling air:

Combining equations (1),

q -- h t --

A - c°nv(Tg TB, °) (3)

Q _ kB
(TB, i ) (4)A t o - TB,

Q _ WcCp, c
A A (Tc,o - Tc, i) (5)

(3), (4), and (5) results in



WcCp, c _ hconv

A _conv

Tg TB_ o

hconvt
(Tg o) -

TB, o kB - TB, Tc, i

(6)

Equations (3) and (6) contain the term for relative total gas temperature Tg. To be
more exact, this term should be the adiabatic wall temperature, sometimes called the

effective gas temperature. For subsonic relative velocities the effective gas tempera-

ture is within 1 or 2 percent of the relative total gas temperature. For the purpose of

this investigation, use of the relative total gas temperature was accurate enough.

Gas-to-surface heat-transfer coefficient (aft of leading edge). - It was assumed that

aft of the leading edge the boundary layer was turbulent and the average heat-transfer

coefficient could be calculated by the flat plate equation of reference 12:

hconv = 0.037 Re0"8pr 1/3k (7)
L

where the characteristic dimension L is the surface length of the blade or vane mea-

sured from the leading edge. Values of L used in the calculations were 2 inches

(5.08 cm) for stator vanes and 1.5 inches (3.81 cm) for rotor blades. The fluid proper-

ties in equation (7), including the temperature effect on density, were evaluated at the

reference temperature given in reference 12:

Tre f=0.5 TB, o +0"28 Tg+0.22 T e (8)

where

T e = Tg+A(Tg Tg) (9)

A = Pr 1/3 (10)

The fluid properties, Pr, thermal conductivity, ratio of specific heats, and viscos-

ity, were obtained from the charts in reference 13 for ASTM-A-1 fuel and a pressure of

10 atmospheres.

Combining equation (7) with gas channel Mach number pressure and temperature

relations for a constant Prandtl number of 0. 705 results in



=o.033k
conv L

p'ML_

/_Tref ( 1+7 2-'----_1M2) (3Y-1)/2(_-1)

0.8

(11)

Gas-to-surface heat-transfer coefficient (leading edge stagnation). - From refer-

ence 14 the local heat-transfer coefficient for a cylinder in cross flow can be determined

from

hc°nv=l'14kRel/2pr0"4_-(-_-):ID 90
(12)

Because this equation was used for high velocity gas flow the gas properties were based

on the reference temperature given in equation (8), and the laminar flow recovery factor

A was taken as

A = _ (13)

In a manner similar to that described for equation (11), and for ¢p = 0 (stagnation point),

the local stagnation point heat-transfer coefficient can be written

h = O. 992 k__
conv D

1/2

(14)

Cooling air thermal effectiveness. - Data from reference 1 are shown in figure 2 to

illustrate the range of cooling air thermal effectiveness

Tc, o - Tc_ i
_conv, avg =

TB, avg Tc, i

that can be expected for a range of relatively sophisticated convection cooled turbine

blades designed for a supersonic aircraft engine at cruise conditions (gas pressure of

3.5 atm or 35.4 N/cm2). It is seen that these blades have thermal effectiveness values

ranging from slightly more than 0.5 to about 0.8. If the inside wall temperature TB, i
had been used in defining this effectiveness (as in eq. (1)) instead of the average wall

y , ,, • ,
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temperature TB,avg, the values of _?conv would have been slightly higher (less than
5 percent). The effect is small in this case since the heat fluxes in reference 1 were

low enough that the difference between TB, i and TB, avg was low (on the order of
35 ° F (19 K)).

The value of _Tconv is not a constant for a given convection cooling configuration.

It decreases as the cooling airflow (Reynolds number) increases. Therefore Vconv

will be smaller for the more difficult cooling conditions of high gas pressure and tem-

perature. The dependence of _?conv on Reynolds number is shown from the following

simple analysis. The heat transferred to the cooling air is

Q _ hc(TB, - i )
Ai i Tc,

Combining this equation with equations (1) and (5) results in

hcA i
?Tcon v - __

WcCp, c

8

U .,][, ,. - ., ...... _ . ,_IJ



which can be written

_/conv - --

Nu A.
C i

RecPr c Af

For turbulent heat transfer and a constant cooling air Prandtl number

Nu cc Re 0. 8
C C

Therefore,

In the analysis of this report the cooling air Reynolds numbers could range up to

16 times the value for the conditions of figure 2. Such Reynolds numbers could result in

a reduction of _conv by a factor of as much as 1.74. The maximum value of _?conv in

figure 2 was about 0.8. Dividing this number by 1.74 could result in 7/conv values as

low as 0.46.

Most relative coolant flow ratios for convection cooling presented in this report are

for a value of _/conv = 0.7. The value of relative coolant flow ratio for convection cool-

ing corresponding to any other value of 7?cony can be obtained very simply by multiply-

ing the relative coolant flow ratio read from the curves of this report by the ratio

0.7/_con v. For the analyses of this report, values of 0.5, 0.7, and 1.0 were taken for

cooling air thermal effectiveness to show the range possible with convection cooling,

while 0.7 was taken as a value that represents advanced, but possible, cooling designs.

A value of 7/conv = 1.0 is the ideal case and represents a limit to the amount of cooling

that is possible with convection.

Transpiration Cooling Analysis

With transpiration cooling the heat-transfer analysis approach was similar to that

for convection cooling except the inside wall temperature does not provide a restriction

on the temperature rise of the cooling air. The following one-dimensional heat-transfer

equations are applicable:



Hot gas to outside surface:

Q

_- hconv_

Heat picked up by cooling air:

htrans (T_ - TB, o)
hconv

(15)

Q WcCp, c (Tc, i) (5)
A - A o - Tc,

Combining equations (2), (5), and (15) results in

WcCp, c _ hconv htrans Tg - TB, o

A r/trans hconv TB, o - Tc, i

(16)

The reduction in gas-to-wall heat-transfer coefficient with transpiration cooling has

been determined experimentally in references 6 to 10 and the results agree with the fol-

lowing relation developed in references 15 and 16:

Sttrans B

Stconv eB- 1
(17)

where

PcVc

B_ pgVg
Stcon v

(18)

B - PcVcCp' g

hconv

(19)

The Stanton number ratio (eq. (17)) is equal to the ratio of heat-transfer coefficients.

Noting that PcVc = Wc/A , equations (17) and (19) can be rewritten

htrans B

hconv e B- 1

(17a)

10



B - WcCp,c Cp,g 1 (19a)
A Cp,c hconv

Therequired coolant flow for a transpiration cooledsurface canbe obtainedby combin-
ing equations(16), (17a), and(19a)to yield

WcCp, c

A Cp,nl,cp (T TBo) 20- hconv _ +
Cp, g [_rans Cp, c \TB, o- Tc, i

The value of _trans in equation (20) was assumed to be 0.8. It is more frequently

assumed that the cooling air discharges from a transpiration cooled surface at the same

temperature as the outside wall temperature, which would result in _rans = 1.0.

Based on the fact that transpiration cooled walls in gas turbine engines will be thin

(about 0. 030 to 0. 050 inch (0.76 to 1.27 mm)) with a limited amount of internal (within

the wall) surface area in contact with the coolant, it seems unlikely that _trans = 1.0

is a good assumption. The value of 0.8 appears to offer some conservatism to the

analysis.

Full Coverage Film Cooling Analysis

To obtain maximum cooling effectiveness from film cooling, the holes should be

closely spaced over the entire surface in order to generate complete film coverage over

the surface. Such a cooling scheme approaches transpiration cooling, but it is less ef-

fective than transpiration cooling because (1) a finite number of film cooling holes will

not provide as uniform an insulating film of cooling air on the outside surface as the al-

most infinite number of holes obtained by transpiration cooling, and (2) transpiration

cooling can utilize more of the heat capacity in the cooling air for reducing wall temper-

ature by internal convection within the walls due to the very large surface area in con-

tact with the coolant relative to film cooling.

Most film cooling analyses, such as those in references 2 and 5, are for isolated

holes or for rows of holes. These investigations and others have utilized several differ-

ent methods of accounting for the method of heat transfer by film cooling. Frequently,

it is assumed that the gas-to-surface heat-transfer coefficient is the same as with con-

vection, but the effective gas temperature is reduced by the insulating effect of the film.

Some investigators have considered a reduction in gas-to-surface heat-transfer coeffi-

cient due to film cooling. Since the model assumed in the present investigation has a

large number of holes, which approaches transpiration cooling, a modified transpiration

cooling analysis was used herein to calculate the cooling air requirements for full cover-

11



age film cooling.

Itwas assumed that the gas-to-surface heat-transfer coefficient for full coverage

film cooling would be a value midway between that for transpiration cooling and convec-

tion cooling and that the film cooling thermal effectiveness _ilm would be equal to 0.6.

From the limited information available, both of these assumptions are conservative

based on the potential of full coverage film cooling techniques. The calculation proce-

dure for full coverage film cooling was similar to that for transpiration cooling except

equation (16) was replaced by

WcCp, c _ hconv hfilm Tg TB, o

A R/film hconv TB, o - Tc, i

(21)

and equation (17a) was replaced by

hconv 2 hconv /

(22)

where htrans/hconv was calculated from equation (17a) for the value of coolant flow

from equation (21). This procedure required iteration of equations (17a), (19a), (21),

and (22).

Temperature Drop Through Wall

For convection cooling the steady-state temperature drop through the wall is linear.

The temperature drop through the wall can be calculated by combining equations (3) and

(4) to yield

hconvt

- - (Tg o) (23)
TB, o TB, i kB - TB,

The temperature distribution through transpiration cooled and advanced film cooled

walls can be calculated by the method derived in appendix B. The temperature drop

through these walls is obtained from the following equations developed in appendix B:

TB, o - TB, i = TB, o - (C2 + C3) (24)

where

12
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C2=

(a 2 - al)e al

C3=-

(a 2 - al)e a2

al = - 2 + + 4_

a2 = -2

k B

hio_A

WcCp, c

AAi internal surface area

A Ax volume

Blade Life

The analysis for blade life was based on the geometry of a typical first stage rotor

blade with a centrifugal stress of the airfoil shell at the root section of 26 000 pounds per

square inch (179 N/mm 2) at cruise. Blade lives were also evaluated for a centrifugal

stress 50 percent greater (39 000 lb/in. 2 (269 N/mm2)). Lives were calculated for

through-the-wall temperature drops of 48 °, 300 °, 480 °, and 600 ° F (27, 167, 267, and

333 K). These linear wall temperature drops were assumed constant over the whole air-

foil perimeter. The outer surface of the blade was held constant at an oxidation limiting

temperature of 1800 ° F (1255 K).

The shell section was divided into a total of 245 nodes or area elements with 12 rows

of nodes through the wall. At the trailing edge there were from 19 to 22 nodes through

13



the wall becauseof the increasedthickness. Thebladewas assumedto be fabricated
from east IN 100(15Co-10Cr-5.5A1-4.7Ti-3Mo-Ni). Creep dataandstress rupture
data from reference 17and stress-strain andstrain cycling fatigue data from refer-

ence 18 were used in conjunction with the stress relaxation program described in refer-

ence 19 to determine the blade lives.

A detailed explanation of the procedure for combining the effects of fatigue and

steady-state creep damage is presented in reference 20. Briefly, this method consists

of the following steps: (1) determine the relaxed stress level at each node; (2) compute

the times to stress rupture at the most critical nodes based on both the relaxed stresses

and the accelerated creep damage before relaxation as explained in reference 20; (3)

compute the number of cycles to fatigue failure based on the total strains at these nodes

and strain cycling data; and (4) combine the effects of creep and fatigue damage by a

life-fraction rule which assumes that the percent of the total damage due to each of these

failure mechanisms must add up to 100 percent. Since the heat-transfer analysis did not

consider transient effects, the total strains at the initial conditions (zero hr at steady-

state cruise) were assumed equivalent to the total strain changes. The stress relaxation

wili affect the total strain levels but not the total strain changes per engine cycle as

demonstrated in reference 20. Stress concentration effects due to film cooling holes

were taken into account by using strain cycling data for bar specimens with holes

(ref. 18). It was assumed that the aircraft would undergo a 2-hour cruise flight and,

therefore, each cycle was equivalent to 2 hours of steady-state operation.

RESULTS AND DISCUSSION

This report indicates the cooling potential and limitations for convection, transpira-

tion, and full coverage film cooling, and it compares the cooling airflow requirements

for each of these methods. Attempts were made to not be unduly optimistic about the

gains that can be obtained with the less studied transpiration and full coverage film cool-

ing compared to the more conventional convection cooling method. The assumptions

used in this analysis have favored convection cooling to an extent probably not found in

the present state-of-the-art, and except for possible effects of gas stream turbulence,

the assumptions have probably penalized transpiration and full coverage film cooling.

For most convection cooling comparisons, the cooling air thermal effectiveness

_/conv was assumed to be 0.7, a high value found only in advanced convection cooled

configurations at heat fluxes corresponding to relatively low gas pressures and temper-

atures. Experimental evidence indicates that _conv = 0.7 is difficult to obtain and a

value of 0.5 is probably more realistic, particularly at high gas temperatures and pres-

sures. For transpiration cooling, experimental data have indicated that the cooling air

14



thermal effectiveness _rans canbe equalto 1. This analysis assumeda conservative
value of only 0.8. Datafor full coveragefilm cooling are muchmore limited than for
the other two cooling methods. Limited experimental datahaveindicated that the as-
sumedvalueof cooling air thermal effectiveness _ilm = 0.6 is a conservative assump-
tion.

The combustion process in turbine engines creates high turbulence levels in the gas

stream. Most experimental heat-transfer investigations are conducted at low turbulence

levels. The effects of this turbulence on heat-transfer processes has not been adequate-

ly investigated. It is not known whether the effects on transpiration and film cooling will

be greater or less than those for convection cooling. Turbulence can cause hot gas mix-

ing with the insulating blanket of cooling air generated by transpiration and film cooling

and reduce their effectiveness. This turbulence effect has not been considered in the

present analysis since experimental data are lacking, but all other assumptions have

been stacked in favor of convection cooling. The results show a marked superiority for

transpiration and full coverage film cooling over convection cooling.

Relative Coolant Flow Requirements

An approximate analysis, such as the one in this report, does more to indicate

trends than absolute values of coolant flow that are required for various cooling methods.

The analysis compares convection, full coverage film, and transpiration cooling based

on cooling air thermal effectiveness 77. Such an approach can be useful, but its limita-

tions must also be considered. As previously discussed, it is probably not possible to

obtain the same values of cooling air thermal effectiveness for all cooling conditions be-

cause of the variations in cooling air Reynolds number, which result from variations in

temperature and pressure level of the gas and coolant and the temperatures of the blade

or vane material.

This report compares the various cooling conditions and cooling methods on the

basis of "relative coolant flow ratio. " Coolant flow ratio is defined as the ratio of cool-

ing airflow to compressor airflow. Relative coolant flow ratio is the coolant flow ratio

relative to a "base" flow for a specific convection cooled blade or vane. In this report

the coolant flows are per unit of blade or vane surface area. The base flows have a

compensation for gas pressure level. This compensation accounts for variations in

compressor airflow with pressure level. No attempt was made to apply a similar com-

pensation for variations in compressor airflow resulting from gas temperature level

since such a compensation would be small relative to the compensation for pressure.

For a comparison of the effects of gas, coolant, and material temperature, mate-

rial thickness, and leading edge diameter at a constant gas pressure of 20 atmospheres

(202.6 N/cm2), the "base" coolant flow used to calculate the "relative coolant flow
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ratio" is that required for the same location on a bladeor vaneof anadvancedstate-of-

the-art convectioncooledbladeor vane (_conv= 0.7) at the following conditions: (1)

total gas pressure at the stator inlet of 20 atmospheres (202.6 N/cm2), (2) turbine inlet

temperature of 2500 ° F (1644 K), (3) cooling air temperature of 1000 ° F (811 K), (4)

blade or vane wall thickness of 0. 050 inch (1.27 mm), and (5) material temperatures

consistent with present practice - 1700 ° F (1200 K) for aft sections of rotor blades,

1800 ° F (1255 K) for aft sections of stator vanes and rotor blades leading edges, and

2000 ° F (1367 K) for stator vane leading edges).

For gas pressures different from 20 atmospheres (202.6 N/cm 2) the "base" coolant

flow in the relative coolant flow ratio at each pressure level has been assumed to be that

which would result ff the coolant side heat-transfer coefficient varied with gas pressure

level in a manner exactly proportional to that for the gas side coefficient. All other con-

ditions are the same as those listed previously for 20 atmospheres (202.6 N/cm2). This

method of comparison is believed to give a reasonable approximation of how the coolant

flow ratio would have to be varied in an engine as design gas pressure is varied.

In this report, turbine inlet temperature is defined as the total gas temperature at

the stator inlet. The relative total gas temperature at the rotor was assumed to be

90 percent of the turbine inlet temperature. This temperature reduction results from

both hot gas dilution from stator cooling air and the relative temperature reduction due

to rotation of the rotor.

Stator vanes, aft of leading edge. - Relative coolant flow ratio requirements are

shown in figure 3 for the section of the stator vanes aft of leading edge for a range of

local turbine inlet temperatures from 2000 ° to 3500 ° F (1367 to 2200 K) and cooling air

temperatures from 600 ° to 1200 ° F (569 to 922 K) for convection, full coverage film,

and transpiration cooling.

Since stator vanes must be designed for combustor outlet hot spots, the turbine in-

let temperatures shown in the abscissas of figure 3 are local rather than average turbine

inlet temperatures. The coolant flow requirements for convection cooling are shown for

ranges of cooling air thermal effectiveness 77conv from 0.5 to 1.0. The plots in fig-
ure 3 were calculated for a gas pressure of 20 atmospheres (202.6 N/cm 2) and a maxi-

mum wall surface temperature of 1800 ° F (1255 K).

Figure 3 shows that with turbine cooling air temperatures of 1000 ° to 1200 ° F (811

to 922 K), which are appropriate compressor discharge temperatures for compressor

pressure ratios in excess of 20, convection cooling offers limited possibilities for

raising local turbine inlet temperature much above 2500 ° F (1644 K). It is obvious,

therefore, that more advanced, and possibly complex, cooling methods will be required

if the very high turbine inlet temperatures predicted for the future are to be obtained.

Figure 3 shows that transpiration cooling and full coverage film cooling offer the poten-

tial for obtaining turbine inlet temperatures approaching those corresponding to stoichio-
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Figure 3. - Relative coolant flow requirements for aft section of stator vanes. Out-
side wall temperature, TB, o, 1800° F(1255 K); wall thickness, t, 0.050 inch
(1.27 ram); gaspressure, p_,s, 20 atmospheres(202.6 Nlcm2_).

metric fuel-air mixture at reasonable coolant flow ratios. Transpiration and full cover-

age film cooling can often permit turbine inlet temperatures I000 ° F (566 K) higher than

permitted with convection cooling at the same coolant flow ratio.

The practical range of cooling air thermal effectiveness 7/conv for effective con-

vection cooled blades and vanes lies in the range from 0.5 to 0.7. Although there are

significant benefits in increasing this thermal effectiveness above 0.7 by improved cool-

ing configurations, reducing cooling air temperature provides a much greater leverage

for reducing coolant flow requirements or to permit increasing turbine inlet tempera-

ture. Comparison of the plots in figure 3 for cooling air temperatures of 1000 ° F

(811 K) and 800 ° F (700 K) shows the following:
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(1) For a relative coolant flow ratio of 2.0 and a coolant temperature of 1000 ° F

(811 K), the allowable local turbine inlet temperature is 2800 ° F (1811 K) for 7iconv =

0.7. By going to the ultimate in convection cooling for 7/con v = 1.0 the allowable local
turbine inlet temperature could be increased to 2970 ° F (1906 K). If, however, the

cooling air temperature were reduced to 800 ° F (700 K), the allowable local turbine in-

let temperature could be increased to 3050 ° F (1950 K), which is 80 ° F (44 K) higher

than would be possible with a "perfectly cooled" convection cooled vane.

(2) For a local turbine inlet temperature of 3000 ° F (1922 K) and a coolant temper-

ature of 1000 ° F (811 K), the required relative coolant flow ratio is 3.0 for T/conv = 0.7.

For _conv = 1.0, the relative coolant flow ratio could be reduced to 2.1. However, re-

ducing the cooling air temperature to 800 ° F (700 K) for 7/con v = 0.7 reduces the re-

quired coolant flow ratio even further to 1.85.

The previous two comparisons show, therefore, that starting with an effective con-

vection cooling configuration (_?conv = 0.7) it is far more beneficial to reduce cooling air

temperature than to try to further improve the cooling effectiveness of the blades or

vanes.

Rotor blades, aft of leading edge. - Figure 4 shows relative coolant flow require-

ments for first-stage turbine rotor blades in a manner similar to that for the stator

vanes in figure 3. All of the coolant flow ratios in figure 4 are relative to those re-

quired for rotor blades of an advanced convection cooling design at a gas temperature of

2500 ° F (1644 K), a cooling air temperature of 1000 ° F (811 K), and an external surface

metal temperature of 1700 ° F (1200 K).

Whereas stator vanes must be designed for the local combustor hot spot temperature,

rotor blades are designed for the circumferentially averaged gas temperature at the

critical radial location (based on stress and temperature). The effect of local combustor

hot spots is averaged out by the rotation. Therefore the turbine inlet temperatures in

the abscissas of figure 4 are circumferentially averaged temperatures at the stator inlet

for the critical radial location, whereas the turbine inlet temperature in figure 3 are

local hot spot values. The results shown can be applied with any combustor outlet tem-

perature pattern. All the coolant flow ratios for stator vanes are relative to the re-

quirements for a convection cooled vane, and rotor blade coolant flow ratios are relative

to a convection cooled blade.

The trends shown in figures 3 and 4 are similar. It is interesting to note, however,

that the coolant flow requirements for transpiration and film cooling are higher relative

to convection cooling for rotor blades than for stator vanes. This effect is due to the

fact that full coverage film and transpiration cooling become markedly superior to con-

vection cooling at high heat fluxes resulting from high gas temperatures. Since the rela-

tive gas temperature for the rotor blade is from 250 ° to 400 ° F (139 to 222 K) less than

the turbine inlet temperature, the rotor blade heat fluxes are not high enough to show as
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large relative coolant flow improvements for full coverage film and transpiration cooling

for rotor blades as for stator vanes. The figure shows, however, that full coverage film

or transpiration cooling will probably be required for rotor blades for turbine inlet tem-

peratures very much in excess of 2500 ° F (1644 K) unless cooling air temperature can be

reduced to values less than 1300 ° F (811 K).

Leading edge. - Figure 5 shows the relative coolant flow requirements for the lead-

ing edge section of the first-stage stator vanes for a gas pressure of 20 atmospheres

(202.6 N/cm2). Figure 5(a) shows the cooling requirements for a leading edge with a

maximum surface temperature of 2000 ° F (1367 K) for convection, full coverage film,

and transpiration cooling. The convection cooling results have a cooling air thermal
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effectiveness _conv of O. 7. The trends in these curves are similar to those for the aft

section of the stator vanes and rotor blades shown in figures 3 and 4 except that the

cooling improvement with full coverage film and transpiration cooling is less impres-

sive. At least a partial explanation for the smaller difference in coolant flow require-

ments for the three methods of cooling results from the assumption that a permissible

leading edge material temperature is 2000 ° F (1367 K), whereas the limiting tempera-

ture assumed in the aft section of the stator vanes was 1800 ° F (1255 K). This higher

material temperature benefits convection cooling due to the larger temperature differ-

ence between the inner wall temperature and the cooling air temperature. The coolant

flow requirements for transpiration and full coverage film cooling relative to convection
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cooling in figure 5(a) at the higher turbine inlet temperatures are similar to those in fig-

ures 3 and 4 at lower turbine inlet temperatures. These results occur from the rela-

tively less difficult cooling requirement at the leading edge due to a higher assumed ma-

terial temperature.

The comparison shown in figure 5(a) is somewhat unrealistic because at the present

time a material temperature as high as 2000 ° F (1367 K) is not possible for transpiration

cooling. At such high temperature levels oxidation becomes severe in porous materials

and clogging occurs. At the present state-of-the-art, a more realistic permissible po-

rous material temperature is 1600 ° F (1145 K). Additional discussion of this oxidation

problem is given in a later section of the report. Figure 5(b) compares convection full

coverage film and transpiration cooling coolant flow requirements for the case where the
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material temperature for convectionandfull coveragefilm cooling is 2000° F (1367 K)

and the material temperature for transpiration cooling is 1600 ° F (1145 K). With this

material temperature limitation on transpiration cooling, it can be seen that the superi-

ority of transpiration cooling relative to convection cooling disappears for gas tempera-

ture less than about 2600 ° F (1700 K). The superiority over full coverage film cooling

disappears for gas temperatures less than about 3200 ° F (2033 K).

Although not shown in figures 3 and 4, similar trends exist for the aft sections of

turbine blades and vanes, but the gas temperature levels at which transpiration cooling

becomes superior to convection and full coverage film cooling are lower in the aft sec-

tion of the blades and vanes.

The results shown in figure 5 are for a gas pressure of 20 atmospheres (202.6

N/cm2). It will be pointed out later that coolant flow requirements are substantially in-

creased for convection cooling as gas pressures are increased, but not for film and

transpiration cooling. Therefore, transpiration cooling will show a greater superiority

over convection cooling gas pressures in excess of 20 atmospheres (202.6 N/cm2).

Convection, Film, and Transpiration Heat Transfer

The marked improvement in cooling air requirements for transpiration and film

cooling relative to convection cooling can be more easily understood with the help of fig-

ure 6. This figure compares the gas to surface heat-transfer coefficients, heat flux

(Q/A), and cooling air temperature rise for the three methods of cooling. With convec-

tion cooling the gas-to-surface heat-transfer coefficient gradually increases (fig. 6(a))

as turbine inlet temperatures increase due primarily to increased gas thermal conduc-

tivity with increasing temperature. With transpiration cooling, however, the heat-

transfer coefficient decreases with increasing turbine inlet temperature. This decrease

results from steadily increasing coolant flow rates which provide a thicker and thicker

insulating layer of air over the cooled surface. The heat-transfer coefficient for full

coverage film cooling lies between that for convection and transpiration cooling, but it is

not an average of the other two values. For a given turbine inlet temperature and mate-

rial temperature, the coolant flow requirement is higher for full coverage film cooling

than for transpiration cooling. This higher coolant flow causes the film cooling heat-

transfer coefficient to be closer to the transpiration coefficient than to the convection

coefficient.

The heat fluxes shown in figure 6(b) are exactly as one would expect based on the

heat-transfer coefficients since the driving temperature difference between the gas and

the surface is identical for all three methods of cooling. The temperature rise plotted

in figure 6(c) illustrates the second reason for the superiority of transpiration and film

cooling over convection cooling. The solid curves illustrate the temperature difference
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between the hottest metal in contact with the coolant (TB, c) and the coolant supply tem-

perature (Tc, i). This temperature difference remains constant as turbine inlet temper-

ature is increased for transpiration and full coverage film cooling since TB, c is the
outside wall temperature. For convection cooling, however, the higher heat fluxes at

high trubine inlet temperature result in an increasing temperature drop through the wall.

Since the temperature difference (TB, c - Tc, i ) on the coolant side of the wall for con-

vection cooling is the difference between the inside wall temperature (TB, c for convec-

tion) and the cooling air temperature (Tc, i) , the heat that can be transferred to the cool-
ing air decreases as the turbine inlet temperature increases.

The temperature rise of the cooling air, shown by the dashed lines in figure 6(c), is

a direct measure of the heat absorbed per unit of cooling air weight flow rate. This

temperature rise is influenced by both the cooling air thermal effectiveness 77 and the
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maximum surface temperature in contactwith the cooling air. This temperature rise is
constantfor transpiration andfull coveragefilm cooling over the entire range of turbine
inlet temperatures, but it decreasesfor convectioncoolingas turbine inlet temperature
is increased. The result of thesecombinedeffects is shownin figure 6(d)as a plot of
relative coolant flow ratio against turbine inlet temperature.

Factors Affecting Heat Transfer

The comparisons that have been made thus far have been for constant gas pressure,

material temperature, wall thickness, and leading edge radius. These factors influence

cooling air flow requirements and will be discussed in this section. This discussion

will be limited to stator vanes. The trends for rotor blades are similar.

Gas pressure. - Figure 7 shows how gas pressure affects the cooling air require-

ments per unit surface area for convection, full coverage film, and transpiration cooling

for stator vanes. It will be observed that gas pressure (a function of compressor pres-

sure ratio) has a significant effect on coolant flow ratio requirements with convection

cooling but no effect with film cooling or transpiration cooling for the assumptions used

in this analysis.
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FigureI. - Effectofgas pressure on relativecoolantflowratiorequirementsforaft

sectionsof statorvanes. Outsidewalltemperature,TB o, 1800°F (1255K); coolant

supply temperature,Tc,i,1000'_F (811K);thermal eff-e_:Iivenessforconvection

cooling,r/conv,O.7.
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Figure 7(a) shows that as gas pressure is increased above 20 atmospheres (202.6

N/cm 2) convection cooling requires excessive cooling air at local turbine inlet tempera-

tures much above 2500 ° F (1644 K) for the aft section of stator vanes having a thickness

of 0.050 inch (1.27 mm). The reason for this rapid rise in cooling airflow with increas-

ing compressor pressure ratio is the high heat flux that results from increased gas-to-

surface heat-transfer coefficients at high pressures. These increased heat fluxes cause

a large temperature drop through the wall from the conduction process. As a result,

the inside wall temperature begins to approach the cooling air temperature for a con-

stant maximum outside wall temperature. This low inside wall temperature can make

convection cooling impractical.

With transpiration and full coverage film cooling, the maximum temperature differ-

ence between the cooling air and wall temperature remains constant regardless of heat

flux (see fig. 6(c)). As a result, compressor pressure ratio does not influence the cool-

ant flow ratio for film and transpiration cooling.

Wall thickness. - Much of the difficulty in convection cooling at high compressor

pressure ratios and high temperatures results from the temperature drop through the

blade or vane wall. Thinner walls reduce this temperature drop. Figure 7(b) shows

coolant flow requirements for a wall thickness of 0.020 inch (0.51 mm) for the aft sec-

tion of the stator vane. Comparison of figures 7(a) and (b) shows that the thinner wall

substantially reduces the coolant flow requirements at high gas temperatures and high

gas pressures. Wall thickness has no effect on full coverage film or transpiration cool-

ant flow ratio requirements based on the assumptions of this analysis. As wall thick-

ness is reduced for full coverage film and transpiration cooled blades and vanes, it may

be more difficult to obtain high values of cooling air thermal effectiveness _ because

there will be less surface area in the film cooling holes or in the porous wall for con-

vection heat transfer to heat the cooling air. The results in figure 7 do not account for

any change in cooling air thermal effectiveness with wall thickness for any of the three

methods of cooling.

Figure 8 shows both cooling air requirements and the temperature drop through the

wall thickness for convection cooling for a gas pressure of 40 atmospheres (405.3

N/cm 2) and a range of wall thickness. In the aft section of the stator vane the figure

shows that at a turbine inlet temperature of about 2650 ° F (1728 K) reducing the wall

thickness from 0. 050 to 0. 020 inch (1.27 to 0.508 mm) reduces the cooling airflow re-

quirements by almost a factor of 2.5. This same reduction in wall thickness for a con-

stant coolant flow would permit increasing the allowable local turbine inlet temperature

from about 2650 ° to 3200 ° F (1728 to 2033 K). The results in figures 7 and 8 show that

there is a significantly beneficial effect of reducing blade or wall thickness for engines

with high compressor pressure ratios and high turbine inlet temperatures from the

standpoint of cooling airflow requirements. It is realized, of course, that structural
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considerations such as foreign object damage, gas pressure forces, and oxidation influ-

ence the minimum allowable wall thickness.

Leading edge diameter. - As shown in equation (12), the gas-to-wall heat-transfer

coefficient in the leading edge is influenced by the leading edge diameter. Increasing

this diameter permits lowering the heat-transfer coefficient and the heat flux. Figure 9

shows the beneficial effect of increasing the leading edge diameter for stator vanes and

rotor blades for convection cooling. Although not shown, the results are similar for

full coverage film and transpiration cooling.

Cooling air temperature. - The effects of cooling air temperature on coolant flow

requirements were shown in figures 3 to 5. Figure 10 shows a replot of some of the

data from figure 3 in a manner that better illustrates the sensitivity of the three methods

of cooling to cooling air temperature. The results for convection cooling are for a ther-

mal effectiveness _/conv of 0.7. Figure 10 shows that cooling air temperature has a
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very marked effect on cooling airflow requirements for convection cooling. It shows

that about the only hope for exceeding a turbine inlet temperature of 3000 ° F (1922 K)

with convection cooling with an external wall surface temperature of 1800 ° F (1255 K)

and a wall thickness of 0.050 inch (1.27 mm) without excessive coolant flows is to re-

duce the cooling air temperature by several hundred degrees below the compressor dis-

charge temperature (which will usually be on the order of 1000 ° to 1200 ° F or 811 to

922 K). Such an approach would require rejecting heat from the cooling air to fuel or

engine bypass air. With transpiration or full coverage film cooling, however, cooling

air temperatures up to 1200 ° F (922 K) could probably be tolerated. Although it would

be beneficial to reduce cooling air temperature from the standpoint of cooling air re-

quirements, the mechanical complexity may not be warranted.

Material temperature. - The effect of material temperature on the cooling airflow

requirements for stator vanes is shown in figure 11. The material temperatures shown

may not in all cases be feasible for cooled turbines, but the calculations were made to

illustrate the benefits that might be obtained through material improvements. The figure
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Figure 11. - Effect of stator vaneaft section metal temperature on relative coolant
flow requirements. Coolant supply temperature Tc = lO00° F(81] K) wall
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shows that increasing stator vane material temperature to 2200 ° F (1478 K) makes con-

vection cooling possible up to local turbine inlet temperatures of 3500 ° F (2200 K) for a

gas pressure of 20 atmospheres (202.6 N/cm 2) and wall thicknesses of 0. 050 inch

(1.27 mm). Although 2200 ° F (1478 K) is approaching the melting point of nickel base

alloys, which are the primary materials in use and under development for turbine blades

and vanes, there are indications that some materials can operate for a few hours at this

temperature in stator vanes. Transpiration and film cooling show a lower sensitivity to

material temperature than convection cooling. Local turbine inlet temperatures up to

3500 ° F (2200 K) are feasible with considerably lower material temperatures for trans-

piration and advanced film cooling. In previous figures the material temperature for

transpiration cooled stators was considered to be 1800 ° F (1255 K). With presently

available transpiration cooled materials and very long time operation the material tem-

perature may in some cases have to be reduced to as low as 1400 ° F (1033 K) in order

to eliminate oxidation problems. If the material temperature had to be reduced from

1800 ° to 1400 ° F (1255 to 1033 K), figure 11 shows that the transpiration cooling coolant

flow ratio would have to be almost doubled at a local turbine inlet temperature of 2500 ° F

(1644 K), and it would have to be increased about 50 percent at a local turbine inlet tem-

perature of 3500 ° F (2200 K). A potential transpiration material with a high tempera-

ture capability will be discussed later.

Comparing figure ll(b) with figure 3 shows that improvement in materials to permit

higher material temperatures results in a much greater potential for increasing turbine

inlet temperature than can be obtained by improving the cooling configuration (increasing

T/conv) above that for the better existing designs. Increasing material temperature about

100 ° F (56 K) is approximately equivalent to increasing 7?conv from 0.7 to 1.0.

By taking partial derivatives of equation (6) for constant hconv we find that

__Wc_._______

_TB_ o/ T' -= _ g TC, i

Tc, i/

Since Tc, i is always less than TB, o it follows that the reduction in coolant flow from
increasing blade or vane metal temperature is larger than that obtained for decreasing

cooling air temperature by the same amount. The same result can be observed by in-

spection of figures 10(b) and ll(b).
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Blade Life and Wall Temperature Drop

Turbine blade life is influenced by stress level, temperature level of the blade ma-

terial, material strength at high temperatures, and thermal stresses that develop as a

result of temperature variations in the wall. For high heat fluxes the temperature drop

through the wall may become as large or larger than the variations around the blade

periphery, therefore, these temperature drops become of considerable importance.

Temperature drop. - The temperature drop through a wall having a thickness of

0. 050 inch (1.27 mm) is shown in figure 12 for convection cooling, full coverage film

cooling, and transpiration cooling for ranges of turbine inlet temperature and gas pres-

sure. Figure 12(b) shows the temperature drop for convection cooling. For these cal-
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Figure 12. - Temperaturedrop through O.050 inch (1.27 mm) wall of aft sectionof

starer vanes. Outside wall temperature, TB,o, 1800°F (1255K); coolant supply
temperature, Tc, i, 1000°F (811 K).
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culations, the temperature difference between the outside wall surface temperature and

the cooling air was 800 ° F (444 K). When the temperature drop through the convection

cooled wall becomes a significant portion of this 800 ° F (444 K) maximum possible tem-

perature difference, convection cooling becomes very difficult. The very high wall tem-

perature drops in figure 12(b) illustrate this difficulty.

The temperature drops through the wall for full coverage film cooling (fig. 12(a))

are smaller than those for convection cooling. Temperature drops for two modes of

transferring the heat with film cooling are shown. The long dash - short dash lines

labeled "no inside wall convection" assume that the entire temperature rise of the cool-

ant takes place within the wall in a manner somewhat similar to transpiration cooling.

In order for heat transfer to occur in this manner, a large heat-transfer surface is re-

quired within the wall as could possibly be obtained by having sharply slanted passages

similar to those shown in figure l(c). In some cases, however, shorter passages may

be desired from the standpoint of fabrication and structural considerations. For such

cases internal convection cooling would be required in conjunction with the film cooling

in order to effectively use a significant portion of the potential temperature rise of the

cooling air (TB, o - Tc, i )" The dashed curves in figure 12(a) illustrate the case where
convection on the inside wall provides half of the temperature rise of the cooling air and

the other half occurs due to convection within the film cooling holes. This mode of heat

transfer results in higher temperature drops throughout the wall than for the case where

all of the heat transfer to the cooling air occurs inside the film cooling passages; how-

ever, these wall temperatures drops are still significantly lower than those occurring

with convection cooling.

The temperature drops through the wall for transpiration cooling (fig. 12(c)) are

just slightly higher than those for full coverage film cooling where there is no inside

wall surface convection. The difference between these temperature drops results from

transpiration cooling materials having a lower effective thermal conductivity than full

coverage film cooling. The calculations in figure 12(c) are based on a thermal conduc-

tivity of 8 Btu per hour-foot-°F (13.84 J/(sec)(m)(K)) which corresponds to a porosity of

the material of about 15 percent (ref. 11). If the thermal conductivity were lower, the

temperature drops would be higher. Calculations made for a very low thermal conduc-

tivity of 1.5 Btu per hour-foot-°F (2.59 J/(sec)(m)(K)) for a gas pressure of 40 atmo-

spheres (405.3 N/cm 2) showed the temperature drop through the wall approaching 800 ° F

(444 K), the maximum possible, since this is the temperature difference between the

outside wall temperature and the cooling air supply temperature.

Figure 12 shows the highest temperature drops for convection cooling, and those for

transpiration and full coverage film cooling temperature drops are close to each other.

Consequently, if stress concentrations from film cooling passages are neglected, ther-

mal stress from through the wall temperature drops will be smaller for full coverage
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film cooling than for convection cooling. Since the structure for transpiration cooling is

not homogeneous, it is difficultto evaluate how the thermal stress for transpiration

cooling will compare with convection and full coverage film cooling.

The temperature drops through blade and vane walls can be reduced by decreasing

the wall thickness. Figure 13 shows wall temperature drops for a wall thickness of

0.02 inch (0.51 ram) as opposed to the 0.05 inch (I.27 mm) wall thickness of figure 12.

In the calculations of this report, blade wall thermal conductivity was assumed invariant

with temperature. As a result, the temperature drop through the stator wall for convec-

tion cooling in figure 13(b) are exactly two-fifths of the temperature drop shown in fig-

ure 12(b). These lower temperature drops significantly improve the convection cooling

capabilities as previously discussed in connection with figure 8. The temperature drop

through the wall for full coverage film and transpiration cooling (fig. 13(a) and (c))are

reduced by approximately the same percentage as for convection cooling when wall thick-

ness is reduced. In the calculations of this report the thinner walls for film and trans-
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piration cooling had no effect on coolant flow requirements because _ilm and _trans

were assumed to be independent of wall thickness. In actual practice, however, the

cooling air thermal effectiveness may decrease as wall thickness decreases. The trends

for full coverage film and transpiration cooling would then be opposite to those for con-

vection cooling. Convection cooling will require less cooling air with thinner walls,

while the other two methods may require slightly more cooling air.

Blade life. - The results of the blade life analyses for an outer surface temperature

of 1800 ° F (1255 K) and wall temperature drops of 48 °, 300 °, 480 °, and 600 ° F (27, 167,

267, and 333 K) at centrifugal stress levels of 26 000 and 39 000 pounds per square inch

(179 and 269 N/mm 2) are presented in table II. Results under conditions of steady-state

creep damage are presented in the fifth and sixth columns, fatigue damage in the seventh

and eighth columns, and combined creep and fatigue damage without and with holes in the

ninth and tenth columns. In addition, for the last condition the temperatures and total

stresses after relaxation at the critical nodes, or nodes with the worst combination of

stress and temperature, are shown in the third and fourth columns. In general, the

critical nodes were near the inside surface of the airfoil shell in the trailing edge region.

An exhaustive discussion of the results in table II would be complicated and lengthy

because of the frequent changes in critical locations. It is not the purpose of this study

to perform rigorous analyses of blade lives and the actual life values are not important.

The trends are important; therefore, the discussion of table II is limited to illustrating

general trends and effects.

TABLE II. - RESULTS OF BLADE LIFE ANALYSES

Wall

temper-

ature

drop,

OF (K)

48 (27)

300 (167)

480 (267)

600 (333)

48 (27)

300 (167)

480 (267)

600 (333)

Centrifugal

stress,

ksi (N/mm 2)

26 (179)

I
I

I
39 (269)

[Outer surface temperature, 1800 ° F (1255 K).

Critical node a

Total stress,

ksi (N/mm 2)

27.8 (192)

46.2 (319)

89.5 (617)

93.0 (641)

41.3 (285)

53.1 (366)

101.8 (702)

105.1 (725)

Temperature,

OF (K)

1762 (1234)

1513 (1096)

1340 (I000)

1275 (964)

1762 (1234)

1538 (III0)

1340 (I000)

1225 (936)

Steady-state life

Based on Based on

initial stress

condition, relaxation,

hr hr

48 117

72 2357

157 462

702 1929

7 12

8 231

76 83

125 575

Fatigue life

for 2-hour

cycles

Without With

holes, holes,

hr hr

(b) (b)

28 000

4 800

2 500

(b)
8 000

2 100

1 200

aFor combined life with holes.

bNot fatigue limited within 30 000 hr.

Combined life

based on life-

fraction rule

Without With

holes, holes,

hr hr

117 117

2357 2328

462 421

1929 1341

12 12

231 228

76 80

575 399
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The main conclusionto be drawnfrom table II is that increasing the wall tempera-
ture drop doesnot necessarily shorten the bladelife. Actually, the shortest blade lives
occurred with the smallest wall temperature drop. As expected, the thermal stresses
(difference between total and centrifugal stress in table IT) increased while the tempera-

ture levels decreased at the critical nodes with increasing wall temperature differences.

The improved material properties at the lower node temperatures have a greater ef-

fect in increasing the steady-state lives at the initial conditions (fifth column) than the

accompanying rise in thermal stresses have in shortening life. However, when stress

relaxation was taken into account the results did not show such a simple trend because of

the complexity of the relaxation effects. This relaxation tends to proceed rapidly when

thermal stresses and temperatures are high and slowly when they are low. The erratic

nature of the results shown in the sixth column arises from two factors: (1) as the wall

temperature drop increases, the relaxation shifts from the critical nodes near the cooler

inside surface to the hotter nodes with high compressive stresses near the outer surface,

and (2) the counteracting relaxirg effects from increasing thermal stresses with decreas-

ing temperature levels at the critical nodes.

The low steady-state lives with the 48 ° F (27 K) wall temperature drop were caused

by the high bulk metal temperature. When the wall temperature drop was increased to

300 ° F (167 K), the blade life was also increased because of the reduction in the bulk

metal and critical node temperatures. At this condition the compressive thermal

stresses near the outside surface were minor. Therefore, there was a large relaxation

in the tensile thermal stresses which resulted in about a thirtyfold improvement in life

over the initial conditions. When the wall temperature difference reached 480 ° F (267 K)

the compressive stresses became predominate and the relaxation effects caused these

stresses to be relieved with very little relaxation of the tensile stresses. As a result,

stress relaxation did not appreciably improve blade life with a 480 ° F (267 K) tempera-

ture drop through the wall because failure results from tension rather than compression.

A 600 ° F (333 K) wall temperature drop resulted in somewhat higher compressive

stresses and strains and an even greater shift of the relaxation process to the vicinity of

the hot outer wall. However, the further reduction in the critical node temperature and

the resulting material properties improvement caused the steady-state life to increase

over that for the 480 ° F (267 K) temperature drop.

The fatigue life decreased with increasing wall temperature drop because of the

greater total strain levels which are the predominating influence on fatigue. The effect

of strain cycling on life for IN 100 materials is relatively insensitive to temperature

level as indicated in reference 18 for test temperatures from 1000 ° to 2000 ° F (811 to

1367 K). However, none of the total strain levels computed for the cases which were

considered were sufficiently high to cause fatigue failure within 30 000 hours at nodes

where there were no holes present.
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Thedeleterious effect of holeson the combinedcyclic andsteady-state lives nulli-
fies someof the heat-transfer advantagesof film andtranspiration cooling over convec-
tion cooling.

Turbine Materials

In previous discussions in this report, material temperatures have been assumed

with little justification given for the choice of values. The majority of the calculations

were made at conservative temperature values for the present state of the art. Calcu-

lations were also made to indicate how coolant flow requirements would vary if the re-

quired material temperatures were increased or decreased.

Blade and vane materials. - Figure 14 illustrates the present and expected future

temperature limitations for several classes of rotor blade and stator vane materials.

At the present time, rotor blades are made exclusively of superalloys (nickel or cobalt

base). Strength capabilities of the best of these superalloys limit their use temperature

to slightly over 1800 ° F (1255 K) for rotor blades. Oxidation begins at lower tempera-

tures (about 1700 ° F or 1200 K). As a result oxidation-corrosion protective coatings

are required when long-life is required. Based on research at NASA and other organi-

zations, it is expected that the use temperature of superalloys for rotor blades can be

extended to about 1900 ° F (1310 K) within the next few years.
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At the present time dispersion and fiber strengthened materials have not found use

in turbine rotor blades. Although TD-Ni and TD-NiCr (materials containing a thoria

dispersoid) have been successful in increasing the use temperature for low stress appli-

cations, their stress carrying capabilities have been too low to use in rotor blades. Re-

search on adding inert dispersoids or refractory fibers to superalloys has given indica-

tion that within the next few years such materials might find use in turbine rotor blades

with metal temperatures up to 2200 ° F (1478 K). These materials will still require

some form of surface protection from oxidation and corrosion for temperatures above

1700 ° F (1200 K). This surface protection may determine the maximum operating tem-

perature as shown by the "coating durability limits" in figure 14.

At the present time two classes of the newer materials have the strength to be used

in stator vanes at material temperatures above 2100 ° F (1422 K). These materials in-

clude superalloys and the dispersion-strengthened nickel and nickel-chromium alloys,

TD-Ni and TD-NiCr. The life of coatings, used to protect stator vane alloys from oxi-

dation, limits the upper use temperature, particularly for long time operation. Within

the next few years it is expected that the use temperature of the superalloys can be in-

creased to about 2250 ° F (1506 K) and the dispersion or fiber strengthened superalloys

to about 2300 ° F (1532 K). It is unlikely that the use temperature can be increased very

much higher because the melting point of some of the alloy constituents is being ap-

proached. To go to higher material operating temperatures will necessitate switching to

refractory alloys. Stator vane material temperatures up to approximately 2400 ° F

(1589 K) may be possible using the refractory columbium alloys. All refractory mate-

rials are extremely prone to oxidation; therefore, durable oxidation resistant coatings

will be required. It is expected, therefore, that refractory alloys will be used only in

applications that do not require long life because coating failure from foreign object

damage could cause a rapid oxidation failure of a refractory alloy.

Transpiration and film cooling material oxidation. - Photographs of typical transpi-

ration cooling and full coverage film cooling materials are shown in figure 15. In these

materials, the coolant flow passages are small. Oxide films can block these passages

and reduce the coolant flow. This blockage causes the material to become hotter due to

poorer cooling, and further oxidation is accelerated. As a result, transpiration and full

coverage film cooling are much more sensitive to oxidation than convection cooling.

NASA research is being conducted on these oxidation problems.

Figure 16 compares the effects of oxidation on the coolant flow rate through transpi-

ration and full coverage film cooling materials. Conventional wire-form transpiration

cooling material, such as illustrated in figure 15(a), is compared in figure 16 for two

alloys for a range of exposure times at 1800 ° F (1255 K). Alloy A is a conventional

nickel-base alloy (HasteUoy X) commercially used in high temperature applications. At

1800 ° F (1255 K) oxidation is severe and wire-form transpiration cooling material be-

comes blocked in less than 400 hours of exposure time. Experimental tests on Alloy B
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an iron-chromium-aluminum-yttrium heating element alloy (GE 1541), show some data

scatter, but do not indicate any blockage from oxidation after exposures up to 600 hours

at 1800 ° F (1255 K). Research is continuing on methods for best fabricating this mate-

rial into a wire-form transpiration cooling material.

Figure 16 also compares a full coverage fiLm cooling material with the wire-form

transpiration cooling material when both materials are made from the nickel-base

alloy A (Hastelioy X). These two material forms iuitially had the same coolant flow

rate per unit surface area for the same pressure drop across the material surface. Be-

cause of the larger, but fewer coolant passages in the full coverage film cooling material,

its clogging tendency due to oxidation was greatly reduced compared to the wire-form

transpiration cooling material.

The results of these investigations indicate that transpiration cooling materials can

probably be operated at material temperatures on the order of 1800 ° F (1255 K) within

the near future. Even higher temperatures may be possible for full coverage film cool-

ing materials. It may be possible to provide oxidation resistant coatings inside the film

cooling holes to further reduce blockage by oxides.
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Factors Not Considered in Analysis

This analysis considered only the cooling airflow requirements for first-stage tur-

bine stator and rotor vanes and blades. It did not consider the problems of shroud cool-

ing, nor the aerodynamic effects of the discharge of the cooling air into the gas stream.

Considering only the first stage of the turbine can be defended on the basis that

cooling is most difficult for this stage due to the high temperature levels at this location.

The results presented can also be used as an approximation for the second stage of the

turbine if the turbine inlet temperatures are considered as temperatures at the inlet of

the second stage.

An analysis was not made on the cooling requirements for the turbine shroud.

Shroud cooling will become a very important requirement at high turbine inlet tempera-

tures, and it must be considered• The general trends shown in this report for blade and

vane cooling should provide at least an indication of the relative merits of the three gen-

eral air cooling schemes as applied to shroud cooling.

The aerodynamic effects of cooling air discharge on the turbine performance consti-

tute a subject of too large a scope to include in this report. In any cooled turbine design,

however, the cooling air flow must be considered in the aerodynamic design. The cool-

ing air flow effects naturally become larger and more important at the higher flow rates

that will be experienced at very high turbine inlet temperatures. In general, it can

probably be concluded that for equal discharge of cooling air, convection cooled turbines

will have superior aerodynamic performance than film or transpiration cooled turbines.

The discharge of film or transpiration cooling air into the vane or blade boundary layer

usually has deleterious effects on turbine performance, particularly if its effect was not

considered properly in the aerodynamic design. The results of this present investiga-

tion, however, indicate that to achieve the very high turbine inlet temperatures and cor-

rected compressor pressure ratios that are expected for future engines, transpiration

and/or full coverage film cooling may be required. More research will be needed to

evaluate the aerodynamic effects of transpiration and film cooling on turbine aerodynamic

perfo rmanc e.

SUMMARY OF RESULTS

The results of this investigation can be summarized as follows:

1. Convection cooling of turbine blades and vanes becomes very difficult under the

combination of high gas temperatures and pressures expected in future engines. High

temperature drops through the blade or vane wall reduce the temperature difference be-

tween the inside wall surface and the cooling air and correspondingly reduce cooling ef-

fectiveness. Reducing wall thickness, developing materials with a higher temperature
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capability, or reducing cooling air temperature with heatexchangerswill permit opera-
tion at higher gas temperatures andpressures, or reduce coolant flow requirements.

2. Reducingwall thicknessfrom 0.050 to 0.020 inch (1.27 to 0.51 mm) could in-
crease permissible turbine inlet temperature by as muchas 500° F (278K) for convec-
tion cooling.

3. Local turbine inlet temperatures up to 3500° F (2200K) are possible for convec-
tion cooledstators if a material with a temperature capability of 2200° F (1478K) canbe
used.

4. Reducingcooling air temperature from 1000° F (811K) to 600° F (589K) could
permit increasing turbine inlet temperature as muchas 500° F (278K) for convection
cooling.

5. Increasingallowable metal temperatures 100° F (56K) or reducing cooling air
temperature 200° F (111 K) cando more to improve the cooling capabilities of convec-
tion cooledbladesandvanesthan is possible by further improvements in the better con-
vection cooling designsnowavailable.

6. Thecoolant flow requirements for full coveragefilm andtranspiration cooling
are very much lower than for convectioncooling at high turbine inlet temperatures and
high compressor pressure ratios. Thesecooling methodscanoften permit turbine inlet
temperatures 1000° F (556K) higher thanpermitted with convectioncooling at the same
coolant flow rates. Coolingair temperature andmaximum allowablewall temperature
haveconsiderably less effect on the coolant flow requirements for transpiration and full
coveragefilm cooling than for convectioncooling.

7. Unlessoxidation problems canbe overcomein transpiration cooledmaterials to
permit them to operate at temperatures approachingthat possible with conventionaltur-
bine materials, transpiration cooling may not showadvantagesover full coveragefilm
cooling exceptfor extremely difficult cooling problems suchas local turbine inlet tem-
peratures in excessof about3200° F (2033K) at compressor ratios in excessof 20.

8. For a given maximumoutsidewall temperature (suchas anoxidationtempera-
ture limit), hightemperature drops throughthe wall thickness are not necessarily detri-
mental to blade life. Dueto the lower averagewall temperaturewith the hightempera-
ture drops, suchblades or vanesmay havelonger life than the oneswith lower tempera-
ture drops.

9. Recentresearch on bothsolid and porousturbine bladeand vanematerials show
promise of increasing the permissible material temperatures for convection, iilm, and

transpiration cooled turbine blades and vanes.

Lewis Research Center,

National Aeronautics and Space Administration,

Cleveland, Ohio, June 9, 1970,

720-03.
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APPENDIX A

SYMBOLS

A

Af

A i

B

Cp

D

d

g

h

h c

k

L

M

Pr

P

Q

R

Re

St

T

external blade surface area

coolant passage flow area

coolant passage surface area

defined by eq. (18)

specific heat at constant pres-

sure

blade or vane leading edge

diameter

coolant passage height

gravitational constant

gas-to- surface heat transfer

coefficient

surface-to-coolant heat transfer

coefficient

thermal conductivity

Reynolds number characteristic

length (average blade or vane

surface distance from leading

edge)

Mach number

Prandtl number, Cp_/'k

pressure

heat transfer per unit time

gas constant

Reynolds number, pVL/_ or

pVD/u

Stanton number, h/OVCp

temperature

T* dimensionless wall temperature

t vane or blade wall thickness

V velocity

w coolant flow rate

x coordinate through vane or blade

wall

ratio of specific heats

fractional portion of total heat

transfer to coolant occurring

on inside wall surface

cooling air thermal effectiveness

defined by eqs. (I)and (2)

recovery factor

viscosity

x/t

density

angle measured from stagnation

point, deg

Subscripts:

A

P

(P

avg average

B blade or vane wall

B, c wall in contact with coolant

c coolant

conv convection cooling

e effective or adiabatic

film film cooling

g gas

41

• . •



o

ref

inside of blade or vane (coolant

side), or inside surface

outside of blade or vane (gas

side), or outside surface

reference

at stator inlet

trans transpiration cooling

Supe rsc ripts:

' relative total

- average over dimension L
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APPENDIX B

FILM AND TRANS PIRATION COOLED WALL TEMPERATURE PROFILES

Analysis

A porous wall model shown in figure 17 was used to describe the temperature pro-

files through the vane or blade wall for both transpiration and film cooling. It was as-

sumed that the porous wall model could be used for the full coverage film cooling case

due to the large number of closely spaced holes present.

The heat transfer process was modeled by considering a one-dimensional counter-

flow situation where heat flowing by conduction through the wall in the negative x-

direction is continuously transferred to the coolant in counterflow by convection.

Coolant flow, Wc

TC, I"...... _

Region II -.

Porous wall

_ Tc(_)

', Region 3

TB,o

Hot gas

QIA

I"-z_x --"I

dTB I__";'_'_:_1 dTB + d / dTB\

\
h i I_AilT B - lc}

Figure 18. - Typical element o! porous wall.

Figure 17. - Porous wall temperature profile model.

Describing the porous wall as being composed of cooling passages within the matrix

material, it was further assumed that conduction in the fluid in region I is negligible

compared to that of the matrix.

Consider an element in the porous wall of area A normal to the x-direction as shown

in figure 18. An energy balance on this element gives

d2TB AA i
k B - h i (T B - Tc) (B1)

dx 2 A Ax
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where h i is the internal matrix surface-to-coolant heat transfer coefficient and AA i

the internal surface area within the element. Defining a as an internal area density

equal to

AAi internal surface area

A Ax volume

is

leads to the following expression for the coolant temperature in region I:

k B d2TB
T c = T B (B2)

hia dx 2

For a homogeneous pore structure, a is constant with x.

An energy balance on the coolant within the element in figure 18 results in

kBA d2T B dT c

WcCp, c dx 2 dx

(B3)

Differentiating equation (B2) with respect to x and substituting into equation (B3) leads

to the following equation for the temperature distribution in the matrix material:

d3TB hicrA d2TB hi_ dT B

dx 3 WcCp, c dx 2 k B dx

- 0 (B4)

In dimensionless form equations (B2) and (B4) become

1 d2TB

Tc = TB )t d_2
(B5)

d3T_ d2T_ dT_

d_3 d(2 d_

=0 (B6)

where

, TB
TB _ - Tc_ i

TB, o - Tc, i
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T* = Tc - Tc' i

c TB, o - Tc, i

hiat2

k B

hiotA

WcCp, c

The solution to equations (B5) and (B6) results in the following expressions for the

coolant and wall temperature profiles:

where

al_ a2_
T_(_) : C 1 + C2e + C3e (BT)

c= - + C 3 - ea2

= 1

= 1

(B8)

Boundary Conditions

A number of investigators (refs. 21 to 24) have considered various boundary condi-

tions for the porous wall heat-transfer model. None of these were entirely appropriate

for the present analysis.

Three boundary conditions are sufficient to evaluate the three constants C1, C2,

and C 3. The temperature distributions T_(_) and Tc(_) would then be known if the

product of the inside surface-to-coolant heat transfer coefficient h i and the internal
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area density o was known. However, in general, H (where H = hio ) is difficult to de-

termine; hence, a fourth boundary condition was introduced so that the temperature pro-

files could be determined without explicitly specifying H. The four boundary conditions

are

T_(1) = 1 (B9)

Tc(1 ) = 7} (B10)

dTB(0)
;v_

d_ t3
(Bll)

Tc(0)_ /3 dT_(0)
d_

(B12)

The quantity _ is the fractional portion of heat transferred to the coolant from the in-

side (x = 0) wall and will be discussed later. The thermal effectivensss 7/ is for either

transpiration or film cooling.

The first boundary condition (eq. (B9)) is that of a specified outside wall tempera-

ture - 1800 ° F (1255 K). The boundary condition of equation (B10) is that of a specified

cooling effectiveness for either transpiration or film cooling (0.6 for film cooling and

0.8 for transpiration cooling). The boundary conditions at x = 0 for the coolant and the

matrix material (eqs. (Bll) and (B12)) provide for the possibility of including convection

from the inside wall to the coolant. These two conditions are now discussed. From a

heat balance on the coolant region II,

Q2 dTB
A- kB _ x=0 - we cP'cAITc(0)- Tc, i]

or in dimensionless form,

dT_(0)
- Tc(0 )

d_

Representing the heat flux Q2/A as some percentage

wall from the hot gas stream (given by eq. (3)) gives

dT_(0) dT_(1)

d_ d_
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and substituting dT_(1)/d_ from equation (BT) gives

A discussion of the choice of _ values for transpiration and film cooling follows.

It was assumed that conduction in the coolant upstream of x = 0 is negligible. This

assumption can be justified in the following manner. Consider flow between a series of

parallel plates of negligible thickness all at the same temperature at a given x location.

If x = 0 is the leading edge of the plates, there is no surface area normal to the direc-

tion of flow at x = 0 from which convection to the upstream coolant can take place - a

situation closely approximated by the transpiration cooling case due to the essentially

"infinite" number of pores. Results in reference 25 indicate that if RePr _ 50 (Re

based on the hydraulic diameter) conduction in the negative x-direction in the region

x < 0 is negligible; hence, the approaching fluid does not feel the effects of the plates

until it reaches x = 0.

In the porous wall case, the Peclet number (RePr) was greater than 100 for typical

film cooling hole diameters and transpiration pore sizes at the lowest coolant flow rate.

As a result, _ was set equal to zero for transpiration cooling. Two cases were con-

sidered for film cooling, _ equal to 0 and 0.5. The latter case represents a condition

where half the total temperature rise of the coolant takes place upstream of the wall due

to convection from the surface in the x = 0 plane between the holes.

The constants

Solution

C1, C2, and C 3 of equations (B7) and (BS) are given

CI=0

C2=

(a 2 - al)e al

C 3 = _

a2
(a 2 - al)e
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With a and _ defined as

H

)L

H

the value of

numerically:

H which satisfies the following equation (from eq. (Bll))was determined

(2-7?)sinhl2 ariel+ 4-'-_--_-_il+Ha2 Ha24--_ cosh 12 ariel+ 4---_ =-_ 1+ 4--_-¢ella2 Ha2

1 aH
2
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